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Microwave Measurement of a Complex Dielectric Constant

Over a Wide Range of Values by Means of a
W aveguide-Resonator Method

CHINMOY DAS GUPTA, MEMBER, IEEE

Abstract—A new method of measuring complex dielectric con-
stants at microwave frequencies by introducing a resonant circuit
comprised of the experimental sample within a waveguide is de-
scribed. The theoretical evaluation of working equations for the
complex dielectric constant under the quasi-stationary distribution
of the field within the sample is given. In this case, the equations
are derived 1) considering the elements as lumped parameters and
2) distributed parameters are treated by means of transmission line
equations. The two sets of equations are compared.

The working equations are also derived for the condition when the
experimental sample takes up the form of a radial line. The accuracy
of determining the parameters is computed and experimental results
are provided as verification of the applicability of the given method.

INTRODUCTION

N the given work, a new method of measurement of

complex dielectric constant over a wide range of values

is suggested. The basic principle of the method is a combin-
ation of waveguide and the resonator method.

The resonant unit consists of a tunable coaxial line, the
central conductor of which is extended as a probe within
the waveguide. The experimental sample is placed between
the end of the probe and the wall of the waveguide as
shown in Fig. 1.

In order to increase the effect of the experimental sample
on the measurable parameters, the height of the wave-
guide is reduced and this is subsequently matched to the
standard waveguide by means of a Chebyshev impedance
matehing transformer.

During the quasi-stationary distribution of fields within
the experimental sample, resonance is obtained by means
of the tunable coaxial line and the real part of the complex
dielectric constant can be expressed as a function of the
resonance value of the coaxial line reactance.

Tan 6 of the experimental sample at quasi-stationary
distribution of field is determined as a function of the re-
flection coefficient at resonance and also from the change
of @ of the resonant contour after the placement of the
experimental sample.

The working equations for ¢ and tan é of the experi-
mental samples under the quasi-stationary distribution of
field are derived considering the resonator elements as
lumped parameters. More exact equations are derived
with the help of transmission line equations under the
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specific boundary conditions. Convergence of the two sets
of equations is evaluated for the specific values of the
resonant, elements.

With the increasing ¢ or frequency, the condition for
the quasi-stationary distribution of field within the sample
fails to satisfy and subsequently the disk sample takes up
the form of a radial line having ordered resonant and anti-
resonant frequencies. In such cases, the input impedance
of the experimental sample will have successive impedance
maxima and minima. By noting the frequency difference
between the two successive antiresonant points, ¢ of the
experimental sample can be determined.

However, resonance frequencies of the experimental
sample could also be used to determine €, but it would
have less effect on the measurable parameters and conse-
quently the accuracy of the measurement would be less
than the corresponding antiresonant measurements. The
real difficulty encountered during the measurement of
the complex dielectric constant of the experimental sample
in the form of a radial line is in the exact elimination of
reactance of other elements in the resonant contour.

Tan 8 of the experimental sample can be determined
from the magnitude of the reflection coefficient at one of
the lower antiresonant points of the sample.

At further increment of ¢ of the experimental sample,
as in the case of certain ferro-electric materials near the
point of phase transition, the input impedance of the ex-
perimental sample is quite low in order to have appreciable
effect on the measurable parameters and consequently,
the accuracy of determining ¢, tan & goes down. In order
to increase the input impedance of the experimental
sample, a A/4 impedance transformer can be used as
shown in Fig. 6.

Accuracy of determining ¢/, tan & in these cases is eval-
uated and the experimental results are provided verifying
the applicability of the method at different ranges of ¢/,
tan § values. The possibility of thermal shielding of the
experimental sample in this method makes it easier to
study the thermal behavior of dielectric properties.

THEORY

Quasi-Stationary Distribution of Field within the Sample

Case 1-—Lumped Parameter Concept: When the condition
of quasi-stationary distribution of field within the experi-
mental sample is satisfied, the system can be represented
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Fig. 1.

by means of an equivalent circuit as shown in Fig. 2,
where

reactance of the tunable coaxial line;

Xk

X¢ capacitive reactance of the experimental sample;

X. reactance of the probe; ‘

R¢ X tan 8. Equivalent resistance due to losses in the
experimental sample;

Er equivalent losses in the measurement system, i.e.,

wall of the waveguide, probe, and tunable coaxial
line.

If the VSWR of the system»vwithout probe is equal to
unity

Zotan kl + Xz = 0 (1)

where Z, is the characteristic impedance of the coaxial
line.

l; is the length of the short-circuited coaxial line, tuned
to resonance with probe only. If L is the corresponding
length of the coaxial line for resonance with the experi-"
mental sample

Zotan kly — X, 4+ X = 0. (2)

Substituting (1) in (2), the reactance of the experi~
mental sample can be expressed as

X . [Zo Sin k(lz — ll)]
¢ | cos ki cos kl,

1 e emr?

2xfC d

(3)

‘where

& permittivity of free space;
r radius of the experimental sample in meters;
d thickness of the sample in meters.

Tan & of the sample can be determined with the help of
the reflection coefficient of the system tuned to resonance.
If the losses in the waveguide system are not high, as-
suring VSWR < 1.1, the losses in the system without the
experimental sample can be determined with the help of
the reflection coefficient of the system tuned to resonance

Experimental unit.

"
Ay
X

X
[
- &
Rc XC tg

Fig. 2. Equivalent circuit of the experimental unit.

~without the experimental sample. Tan § of the sample, as

a function of these reflection coefficients can be expressed
by means of the following equation:

2pw 1 1 1 T
o[ 11 dtini]
& L1—[Tr] 2 2[1—|Ty(]
where
pw characteristic impedance of the reduced height
waveguide at the position of the experimental
sample;
I'r reflection coefficient of the system with the sample
tuned to resonance;
Iy reflection coefficient of the system without the

sample tuned to resonance.

Tan é of the sample can also be determined from the

- change of @ of the resonant system after the placement of

the sample. If I, as denoted earlier is less than A/4, i.e.,
for the samples with low ¢/, the tan & of the sample can be
determined with the help of the equation

1 sin kly cos kl,
tan 6 =2 — —_—
an Y Qosin bl — 1)

QI
where Q' is the loaded @ of the resonant system and @, is
the unloaded @ of the resonant contour.

If I, > A/4, ie., for the samples with high ¢/, tan & can
be expressed by the following equation:

(5)

tan § o [ 1 l] sin kl; cos ki,
1@ T @lsink— Ly

For lossy samples with low ¢, it is difficult to determine
the loaded @ because, with detuning, the reactance of the

(6)
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coaxial line and that of the probe change. The effect of
this detuning has been taken into account in the work [1].

Quasi-Stationary Distribution of Field within the Sample

Case 1—Derivation of Working Equations with the Help of
Transmission Line Equations: In the given case, the equa-
tion for the influence of the experimental sample on the
reflection coefficient is derived with the help of transmis-
sion line equations. It can be assumed that the distribu-
tion of current along the probe can be quite accurately
represented by the following equations:

d
f=mm+m )
Y
dl
= Yo (8)

where

Y  distributed admittance of the probe;

Z  distributed impedance of the probe;

¢  scalar potential along the length of the probe;
resultant electric field along the surface of the
probe.

Er = Et 4+ E-.
Assuming that the distribution of current along the

probe is known, the amplitude of the reflected wave can
be derived with the help of the equation

1
E- = — / I E+d 9
Ns () E* dy (9)
where
E+  amplitude of the incident wave;
I(y) function of current distribution along the probe;
Ns  norma.

For a waveguide excited by the TEy mode of operation,
Ng can be given by [4]

— ab A 271/2
Ny = EHell — (=
S = 1505 EY) [ (2a>]
where a is the width of the waveguide and b is the height
of the waveguide. It is assumed that the characteristic

impedance of a probe can be approximately represented
with the following equation [27:

(10)

A
pp = 60 {2‘303 log = + 0.116} (11)

T

where 7, is the radius of the probe.
Applications of the above equation which is derived
from antenna theory [27] in the unbounded medium, is the
basic assumption made for the given problem. Subsequent
experimental verification of the characteristic impedance
of the probe with an accuracy better than 4 percent under
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given experimental limitations, justifies the previous as-
sumptions regarding current distribution along the probe,
so also the applicability of transmission line equations
within the bounded medium with certain approximations.

If the solutions of (7) and (8) are represented by the
following equations:

¢ = Asinky 4+ Bcosky (12)

B+
I=Csinky+ Dcosky —j-— (13)
kop

the constants A, B, C, and D can be determined with the
help of the boundary conditions:

¢ !y=o =0 (14&)
& lyb—o = JI lymb—o X Tooax (14b)
¢ ly=0+0 = Iy |y=o+o X X (140)

where Zcoax 18 the reactance of the coaxial line and z, is the
reactance of the sample.

After determination of the constants C and D with the
help of boundary conditions, it is possible to get an expres-
sion for the reflection coefficient by means of (7), (9),
and (12).

In the case of experimental samples without losses, the
equation for reflection coefficient can be expressed by

r-—-"_ (15)
M=

where u and 9 are functions of N, pp, X¢, Xk and can be

represented by

cot kb} (16)

= ’CppN,s {pp sin kb pp

XcXx  cot kb

pp? pP

J= {1 n (Xx — Xo)} .

At resonance dT'/dXx = 0 and correspondingly the re-
actance of the coaxial line at resonance can be expressed
as a function of reactance of the experimental sample by
means of the following equation:

_ [Xo cot kb — pp]
- e [Xc + pp cot kb] )

Xx (18)

The expression for reflection coefficient from a short-
circuited probe takes up the form

_ = b/kppN s
14 j(b/kprNs)
A similar problem has been solved [3] for a waveguide

shunted by a probe and the equation for the reflection co-
efficient in this case is given by

(19)

-1

T = Trox (20)
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The magnitude of the reactance as put by the probe across
the waveguide can be evaluated with the help of the fol-
lowing equation [3]:

2 d
X = —q—cscw—d[lni . sin"L
24, TTp a
d kZ 2
_szf_(Q +_G)
7'.?

2rd 3 w2d?
R —In— 4+ - .
+ ( n a + 2 + 360,2)]

(21

r, radius of the probe;

d  distance of the center of the probe from the wall
of the waveguide (in the given case d = a/2);

A, guide wavelength;

a width of the waveguide.

The reflection coefficients for identical configurations
as caleulated for r, = 0.75 mm and Ay = 10 cm for the
S-band waveguide according to (19) and (20) are, respee-
tively, (—0,17 + j0.432) and (—0,164 + j0.31). By re-
placing X¢ = X¢ (1 — jtand) in (I14c), tand of the
experimental sample ean be determined with the help of
the following equation:

_ —{kBXc tan § — KX tan )2 + K{{£Xc tan 8 — K¢}
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values of ¢, as it was subsequently verified experimentally.

Resonance values of coaxial line reactances for different
values of ¢ are calculated with the help of (3) and (18).
Tt can be seen from Fig. 3 that the two equations converge
for Xx = 0, i.e., when the capacitive reactance of the ex-
perimental samples is tuned only by the inductive re-
actance of the probe; and from the accuracy curve [ Fig.
4(a) and (b)] it can be seen that the € of the experi-
mental sample in this region can be determined with the
best accuracy. Subsequent experimental verification shows
that € of the experimental sample can be evaluated more
accurately with the help of (18).

Accuracy: From the accuracy curves for determining
Fig. 4(a) and (b), it can be seen that the ¢ can be de-
termined with satisfactory accuracy (in the range of
30-120) by proper adjustment of sample dimensions,
(i.e., thickness and diameter) and the characteristic im-
pedance of the probe (i.e., by changing the diameter of
the probe). ‘

Increase in error in the determination of ¢ for lower
and higher values of ¢ can be explained by the fact that
lower values of ¢, for which the coaxial line is tuned more
towards A/4, produce large error due to the inaccuracy
of determination of the length of the coaxial line.

For higher values of ¢, inaccuracy grows due to the
errors in the determination of sample dimensions. How-

IT| =

where

1 £ [& _ cot kb]

2 pP

2Xx 1 1
= —cotkb) — —
B {W (sin w b) k,,P}

. [ZXCXK { 1
kpp2 sin kb
| ' | is the reflection coefficient at resonance. For smaller

values of tan s, (22) can be simplified in the following
form:

— cot kb} + (Xx — Xg}] .

Kifir|—1}
glr]
The effect of losses in the system can be taken into account
by assigning a complex value to the characteristic im-
pedance of the probe. However, it is more complicated
to determine the value of tan s by taking into account
the losses in the system. For this purpose, (4) can be used
more eonveniently than the previous method. For systems
with extremely low losses and for moderate values of
107 < tan & < 1072, (23) gives more satisfactory results.
Equation (18) as derived with the help of transmission
line equations is more exact than (3) for evaluating the

tan § =~ (23)

(22)

{KBXctané — KXo tan 8}2 + {{Xctand — £K}2

ever, the effect of fringing field has been neglected in all
these calculations. Any misalignment of the experimental
sample with the probe will enhance the effect of fringing
field and an attempt has been made to minimize any error
due to this by extremely careful alignment of the experi-
mental sample with the probe, and very good contact of
the sample with the waveguide by silvering the sample.
In the present geometry of the experimental setup the
fringing field effect can be neglected in the first-order
approximation. The given curves estimate the aceuracy
mainly due to the error in measurements of sample dimen-
sions and frequency instability of the generator. The effect
of fringing field which is certain to influence the accuracy
of measurement has not been taken into account. The
samples are selected for which the condition of quasi-
stationary distribution of field is well satisfied (ie.,
a/ (2K A/2 and /()2 K A/2).

But the limiting cases for which the sample does not
take up the form of radial line, and for which, at the same
time, the condition of quasi-stationary distribution of
field is not well satisfied, are not studied in the present
work. In such ecases, the anomally can be partly reduced
by employing samples of special shapes, which is a sepa-
rate subject of detailed study.

The accuracy curves for tan é [Fig. 5(a) and (b)], re-
semble those of resonator methods where errors grow with
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(a) Accuracy of determination of tan 8. (b) Accuracy of

determination of tan 3.
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reducing values of tan 8, as the losses in the experimental
sample are comparable with the losses in the system and
for higher values of tan §, the resonance curves become
quite flat, so that the error increases in the measurement

of the loaded Q.

7 ~
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where Jo'(z) and Jy'(x) are derivatives of Jo(z) and J(2),
respectively.

By using recurrence relations of the Bessel functions,
the final expression for input impedance for such a radial
line can be expressed as

= R (<1

For very low lossy samples, the loaded @ of the resonant
contour increases due to redistribution of current in it.
This is observed experimentally, in the case of a low-loss
ceramic (Fig. 8) where the resonance curve shows more
reflection than in the case of resonance with a short-
circuited probe.

Case 2—The Sample in the Form of a Radial Line: With
increasing values of ¢ and that of frequency, it becomes
difficult to satisfy the condition of quasi-stationary dis-
tribution of field within the experimental sample and by
further increasing ¢ (or frequency), the disk sample takes
the form of a radial line. If the thickness of the sample
is much less than A/2, field distribution within this radial
line will be of the TMy, type [4] and the field components
within it can be represented by

E. = E¢Jo(kr) (24)
where
jwe' OF, .
HO — '?.Eoi 9 = Jwe/EoJl(k'r) (25)
k oar
2 ' sl
b= = 0 = alua) (¢ — e

Jo(z) is the Bessel function of zero order and Ji(x) is the
Bessel function of first order.

The coupling of field of the waveguide and that of the
sample takes place through the continuity of electric-field
components, whereas in the subsequent modified version
with the A/4 coaxial line transformer, coupling takes place
through the continuity of magnetic field components.

‘The equation for input impedance of such a radial line
can be derived from

jd k Jo(kr)

2R we J1(kr)

(26)

where d is the thickness of the sample and R is the radius
of the sample. )
By expanding (26) with the help of Taylor’s series and

]120d {[SJOJI — z? tan? 5J1(J0 - Jl):] +]$ tan 6[4:]12 + 2J0(J0 - Jg)]
16J:2 + 22 tan28(Jy — J2)?

neglecting the second-order terms, the expression for input

tan § =2

} . (28)

The input impedance of such a radial has got repetitive
resonant and antiresonant frequencies. It can be shown
from (28) that the difference between two successive reso-
nant or antiresonant roots of Bessel function is equal to .
Therefore, by measuring the difference in frequencies of
two successive antiresonant points, ¢ of the sample can
be determined from the equation ’

Ty — Xy = T — [w1 —_ wzj(ue')llzR

(@ =2 0h~ £IR (29)

The input impedance of the experimental sample at the
antiresonant (AR) point takes the form

120d }
R()12 X yg- tan &
where Xan = 3.83 + nm, n =0, 1, 2, 3---, and the reso-

nance value of the input impedance of the experimental
sample

Zar = { (30)

-~ 120d Xgr- tan é
~ R()V24[1 4+ tan? 8]
Xe>~38 + (n+ %)=, n=—10123---.

Zr

(31

In measurements it is more effective to note the anti-
resonant points, because at resonance, the input impedance
of the sample (which is mainly due to the loss term tan §)
is likely to be comparable with the losses in the system
and consequently, the accuracy of measurement will be
less.

Tan 8 of the experimental sample can be determined with
the help of the reflection coefficient of the system tuned to
antiresonance of the experimental sample. The reactance
term of the probe at this frequency should be cancelled
out by means of the tunable coaxial line, from the pre-
determined values for the corresponding frequency. Losses
in the system can be approximately taken into account
with the help of the reflection coefficient from the system
tuned to resonance with the short-circuited probe.

The equation for tan & can be then expressed as

impedance takes the form

_ Jjd-120m [Jo(x) — jz tan 6J0'(x)] o7
T 2aR(HV2 LI (x) — jx tan 8Jy () (27)

T [ — T4r)/2Tar + (1 — T2) /(1 + T'1) Zo, -R() 12X sz

120d
(32)

where
Zy, characteristic impedance of the waveguide at

the position of the placement of the sample;
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Fig. 6. Modified unit to measure high ¢

reflection coefficient from the system with the
sample at an’ciresonance;

I'. reflection coefficient from the system with the
short-circuited probe tuned to resonance.

Tar

In order to reduce error in the measurement of tan §,

the reflection coefficient VS frequency should be measured,

by properly cancelling out the reactance due to the probe.
Any residual reactance of the probe is likely to show not
only the increased value of tané but also some shift of
antiresonant frequency of the sample and a corresponding
error in the measurement of ¢'.

¢ can be determined with an accuracy better than 2
percent and accuracy of determining tan § is higher for
lower values of tan § and reduces with increasing values
of tan 6. This trend is opposite in the case of samples with
quasi-stationary distribution of field in it. Accuracy in
measurement of tané is within 10-12 percent for tané
103102 and within 12-80 percent for tan § 10710,
 For very high values of ¢(¢’>5000), as in the case of a
few ferro-electrics near the temperature of phase transi-
tion, the input impedance is quite low in order to have
significant effect on the measurable parameter. The input
impedance of such samples can be stepped up with the
help of a A/4 impedance transformer as shown in Fig. 6,

Experimental Results

The schematic experimental setup is shown in Fig. 7(a)
and (b). The setup as shown in Fig. 8(a) is used to de-
termine quickly the resonant point for determination of
¢. Keeping the system tuned to resonance, the setup as
shown in Fig. 7(b) is used to determine the reflection co-
efficient, at this point, in order to find out the value of
tan 8. Typical experimental resonance curves are shown
in Fig. 8 for the short-circuited probe and two ceramics.

It is seen that the characteristic impedance of the probe
is determined with an accuracy better than 4 percent. In
order to verify the applicability of the method in the case
of resonant samples VK 7, a specially synthesized material
from BaTiO; and SnTiO; was used as the experimental
sample. :
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Fig. 7. 1—generator; 2—isolator; 3—waveguide coaxial trans-
former; 4—Chebyshev impedance transformer; 5—experimental
unit; 6—detector; 7—power meter; 8—matched load; 9—slotted
line; 10—VSWR meter. (a) Schematic representation of setup to
plot resonance -curve. (b) Schematic representation of setup to
measure reflection coefficient at resonance.

TRANSMITTED CURRENT < P out

e ———t- (2}
—a——sa-(3)

10 20 30 40 50 60
POSITION OF THE SHORT CIRCUTTING PLUNGER (in mm)

Fig. 8. Experimental resonance curves. (1)—short-circuited probe;
(2)—rutile, ¢ = 155; (3)—ceramic, ¢ = 20.

¢ and tan & of this sample as measured by coaxial line
by noting VSWR and minimum position were, respec-
tively, 2620 and 1.35 X 10-3 at room temperature. ¢ and
tan § of this sample as measured by the suggested method
were, respectively, 2600 and 1.5 X 10~3 at room temper-
ature. Exverimental results for a few samples with the
quasi-stationary distribution of field within the samples
are tabulated in Table I.

TABLE 1

. |BY TS 1ETHO BY OTHFR METHOD lomHER METHOD
HATERTAL = = < s
Viniplast |3.43 - 4.0 |(5-6) x 1072 58 -20 |5x102 (5B
Pransparent] 3.31 - 3.6 | (4.5 - 6).x 1079 5.0 = 3.3 |5.5 x 1072 [5)-
Plastie A
sital 9.3 - 9.5 |%1x107" 8.8 -9.0 |30x10° {5}
Ceramie 8.5 - 20 [5.5x 107 20 5.0 x 107 [6)
Rutile 162 - 156 7-9x107 6}
Probe Characteristic impedance Theoretical value - 190 -1

18350
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CONCLUSION

The proposed method which is based on the combined
principle of the resonator and waveguide method can be
used with certain modification over a wide range of values
of ¢ and tan §. This method can be considered to be uni-
versal like waveguide or coaxial line methods [6]-[107].

However, the waveguide and coaxial line methods which
can be used to measure ¢ and tan § over a wide range of
values are to employ graphical solution in certain cases
in order to solve nonsingle valued transcendental equa-
tions [7]. Simpler working equations in closed form in the
given case can be considered to be an added advantage
of this method over the earlier methods, which enables
measurement of ¢ and tan 6 over wide range of values.

In certain cases of the earlier methods, fabrication of
the experimental sample, in order to satisfy the condition
of quasi-stationary distribution of field, requires a very
sophisticated technological setup [9]. The same experi-
mental unit cannot always be used for measuring the
parameters under two conditions of field distribution
[6], [91.

Thus this proposed new method which enables measure-
ment of ¢ and tan & over a wide range of values can be
used with certain attachment for the whole range of these
parameter’s values. When the size of the sample is con-
veniently limited the proposed method proves to be su-
perior to the earlier methods. Convenience of thermal
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shielding of the experimental sample makes it possible
to study the dependence of ¢ and tan § with respect to
temperature, which has important scientific significance
regarding investigation of the properties of materials.
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I. INTRODUCTION

HE PURPOSE of this paper is to develop a general

approach for computing the discontinuity capacitance
for a wide variety of microstrip structures. Currently, a
number of different methods exist for attacking this prob-
lem, e.g., the moment method, the variational approach,
projective method of solution for the integral equation, to
list a few. Discussion of these methods may be found in
publications by Farrar and Adams [17], Maeda [2], and
Silvester and Benedek [37], [4]. The approach to be



